
Software Maintenance in a Campus
Environment: The Xhier Approach

John Sellens –Math Faculty Computing Facility, University of Waterloo

ABSTRACT

Xhier is a system for software maintenance and distribution, currently in use at the
University of Waterloo. It allows easy, automatic software installation on a variety ofUNIX
systems. This paper describes some of the design goals ofxhier, its structure and operation,
as well as some of the problems we have encountered, and some future goals.

The Motivation for Xhier

The Math Faculty Computing Facility (MFCF)
is a majorUNIX support organization at the Univer-
sity of Waterloo, and, in addition to other responsi-
bilities specific to the Math Faculty, provides
software support forUNIX machines all over campus
using thexhier1 software maintenance and distribu-
tion system.

MFCF started doingUNIX support before net-
works and workstations were so widespread. It was
not too many years ago when the MFCFUNIX
environment was a single DEC VAX 11/780 running
4.2BSD UNIX. In that environment, adding and
updating software was relatively easy, since operat-
ing system releases were infrequent and the amount
of third party software was small. It was easy to
just add some source to/usr/src and install
some commands in/usr/bin . If there were bugs
in the OS that needed fixing, or enhancements that
were desired, it was a (relatively) simple matter to
modify the BSD source, and install the change. A
few more BSD VAXes were added without too
much pain, and careful use of tools likerdist (1) and
rcp (1) made it possible to keep things up to date.

Once UNIX machines started being more com-
mon on campus, and different models and brands of
machines started appearing, it quickly become obvi-
ous that a different approach was required. With
operating systems being updated as often as every
few months, different operating systems using dif-
ferent file system organizations, and with useful third
party software proliferating, a more structured and
automated approach was needed.

Development of thexhier system was started
in early 1989 and has been ongoing ever since, with
many enhancements and fixes still planned. MFCF
currently provides software support for 11 different
machine ‘‘architectures’’, using the automated tools

1The namexhier is derived from the BSDhier (7) ‘‘file
system hierarchy’’ man page, where the ‘‘x’’ prefix
indicates eXperimental, though eXtended, eXtravagant,
and eXhausting have all been offered as alternatives.

provided byxhier. Xhier is currently used by over
250 machines, with over 1200 commands in more
than 200 software ‘‘packages’’ available, with over
14,000 package installations on the various
machines.

The Problem to be Solved

MFCF was faced with the task of providing
software support for multiple architectures, serving
multiple machine administrations, and different user
groups and purposes. A research machine in the
Computer Science department might have different
needs than a student workstation cluster in Electrical
Engineering, though both would want some form of
software support, and some selection of locally
installed commands. Additionally, most users want
a consistent environment, regardless of the architec-
ture and operating system of the machine they
currently happen to be using.

Accordingly, it was necessary to find some way
to distribute software to, and make it available on,
large numbers of different machines. This had to be
done with a large amount of configuration flexibility
(so it could be tailored to the needs of different
machines and administrations), and it had to be as
automatic as possible, in order to make the most
efficient use of the software support staff.

Faced with this environment, MFCF’s work on
xhier has proceeded with these primary goals:
� to simplify the distribution of updates,
� to simplify the installation (on multiple archi-

tectures),
� to facilitate sharing software via remote file

systems, and
� to minimize changes and additions to the file

structure distributed with operating systems.

An important underlying goal is that of automation
of as many aspects of the software maintenance and
distribution process as possible.

Xhier takes a different and more automated
approach than systems like thedepot [1]. Appendix
B discusses some of the differences betweenxhier
and thedepot.

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 21

Software Maintenance in a Campus ... Sellens

The Overall Structure

In order to minimize the changes to stock file
organizations, it was decided to locatexhier’d
software in a separate (hopefully) unique location –
under /software 2.

Under /software are the package direc-
tories. In xhier, software is organized into ‘‘pack-
ages’’ of related software. For example, there is a
tex package, containing TeX related software, and a
gnu package containing GNU software. Separating
software into separate packages has two main advan-
tages: it allows a system administrator to pick and
choose what software to make available on a
machine (which may depend on licensing or size
considerations), and it allows the grouping of related
software for maintenance and similar purposes. It
also allows multiple versions of the same software to
be installed and available at the same time.

The other goals are approached using the
details of the organization of software packages, and
by the use of support programs.

Xhier recoginizes that there are three main
steps in making software available to users:
� The files must be placed in an appropriate

location, and be compiled if necessary.
� The software must be configured and initial-

ized appropriately.
� The software must be made available to the

users (typically through search rules).
The structure and tools ofxhier are intended to
make these steps as easy as possible.

% lc /software/x11
Directories:
.admin bin data doc export
include lib logs man

Figure 1: A Typical Package Directory

Software Package Organization

Each software package contains all the files
associated with that software, along with other files
required for the distribution and installation of the
package. A package typically consists of a number
of sub-directories, with the common ones being:
� bin , maintenance and servers contain

commands for users, system and software
maintainers, and other programs to use,

� lib for libraries,
� man for man pages, and
� data for data and configuration files.

The structure and contents of a particular package
are determined by the needs of the package, but

2/software is typically a symbolic link to some
appropriate location, but references toxhier’d software
use the standardized name/software , rather than the
actual location of the directory on a particular machine.

directories like bin and man are used by other
programs to make package components available to
users (more on this below). Figure 1 shows a typi-
cal package directory.

Two sub-directories are used byxhier for dis-
tribution and installation.

% lc /software/x11/export
Files:
boottime crontab inetd.conf
services

Figure 2: A Typical Packageexport Directory

The optional export directory (Figure 2)
contains information to be used outside the package.
It contains such things as services and
inetd.conf file entries required by the package
(e.g., if the package contains a network daemon),
commands to be run bycron(8), commands to be
run on system startup, as well as information on
userids and groups required by the package, and
patches to standard system files like/etc/rc .
These file fragments and patches are applied
automatically to the system configuration files when
a package is installed.

% lc /software/x11/.admin
Files:
Dependencies Install Maintainer
Options Targets file-types

Figure 3: A Typical Package.admin Directory

Each package is required to have a.admin
directory (Figure 3), which contains information used
in the installation and distribution of the package. It
typically contains 4 files:
� Maintainer , which gives the mail address

of the person responsible for installing and
maintaining the software,

� Dependencies , which lists other packages
required for proper operation of the package
(e.g., a package might make use of commands
provided by other packages),

� Options , which sets various options that
determine how the package is distributed and
installed, and

� Install , a program (typically a shell script)
that performs any package specific initializa-
tion to prepare the package for use on a par-
ticular machine (e.g., initialize configuration
files, check for errors, replace stock files if
necessary, etc.).

A couple of other files (Targets and file-
types) are sometimes used to influence the distri-
bution of a package3.

3These files are somewhat of a kludge and may
disappear in the future.

22 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

Sellens Software Maintenance in a Campus ...

The package structure makes each package a
separate entity, containing all the knowledge
required to install and use the software it contains.
It also provides a consistent structure so that pack-
ages tend to look very similar, which makes
maintenance easier.

See appendix A for an example of how pack-
ages are created and installed.

Complicating the Structure

Now for the complication. Recent versions of
UNIX have reorganized parts of the file system to
make file sharing easier. For example, SunOS has
/usr/share , which contains those files that can
be shared among all machines, regardless of CPU
type. Xhier takes this idea a step (or several
steps) further.

Separating files based on their type has two
main advantages, both of which help to satisfy the
goals ofxhier. It makes it easier to share software
via remote file systems (e.g., NFS), because you
can share as much of a package as possible, and
minimize duplication across machines of the same
or different hardware architectures. And it makes
software distribution easier because it makes it
easier to use a tool likerdist (1) to distribute the
appropriate file types to the appropriate machines
e.g., shared files like man pages can be distributed
everywhere, while executable binaries can be dis-
tributed to just those machines with the same
architecture.

Xhier currently recognizes six file types:
� share: files like man pages, shell scripts,

and (typically) the .admin and export
directories

� arch: files that are different on different
hardware/operating system combinations,
most commonly executable binaries

� spool: files of a transient nature, like print
requests

� local: files specific to a particular machine,
such as local configuration or log files

� regional: files shared between clients and
their password and home directory server,
such as nntp server names

� admin: files shared among all machines in
a particular administration, such as printer
permission files

The regional and admin types are variations on
the local type that seem to be useful. In practice,
it seems that there are actually more file types
(e.g., man might be used to describe man pages
and documentation, because you might not want
those locally onevery machine, in order to save
space), but these six types are recognized explicitly
in the xhier file structure.

This is accomplished through the use of the
/.software directory. /.software contains
one sub-directory (or, more typically, a symbolic
link to, or an NFS mount of, an appropriately
located directory) for each of the six basic file
types, with each sub-directory containing package
directories. For example, the man pages for the
tex package are in share/tex/man in the
/.software directory, while the command
binaries are in /.software/arch/tex/bin .
Note that the two directories/software and
/.software/share are the same place4.

Every package has a shared component; in
particular, the .admin directory must exist, and
is always a shared directory. And since
/software and /.software/share are the
same place, this ensures that, for a package called
pkg, /software/pkg will always exist.

It is desirable to hide the file type structure of
a package from the outside world, so that a user or
another program does not need to be concerned
with the internal structure of a package. So, even
though every file in a package can be referenced
through /.software type directories, references
from outside the package itself are always made
through /software/pkg . (A package is
allowed to know its own structure, and refer
through /.software as appropriate.) This is
accomplished by the (liberal) use of symbolic links
in the /software/package directory. For
example, /software/tex/bin is actually a
symbolic link to arch/tex/bin in the
/.software directory. It is also possible to
have a shared directory contain real files along
with symbolic links to files in directories of other
types. For example, a package might have com-
mands that are primarily shareable shell scripts,
with the few compiled commands being referenced
through symbolic links in the sharedbin direc-
tory5. Note that these links, while pointing to dif-
ferent absolute locations on different machines, are
shareable, since they link through/.software .

The result is that the file type directories
under /.software provide separate hierarchies
for different types, which makes file sharing and
distribution much easier. For example, diskless
workstations will usually share and mount all file
types from their server, with the exception of the
local type, which each client will have its own

4This means that one of /software and
/.software/share is redundant, but /software
was the original name, and provides a nice name for
people to use, while /.software/share was
included primarily for completeness.

5This latter structure, while within the rules, can
sometimes be confusing, so it is usually better to make
the directory the symbolic link, and its contents be real
files, rather than a mixture of the two.

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 23

Software Maintenance in a Campus ... Sellens

version of. The /software link provides a
naming convention for access to the components of
a package. Note that a given machine will have
the correct type hierarchies for itself only, e.g.,
/.software/arch on a VAX contains only
VAX binaries, and on a Sun will contain only Sun
binaries.

Automating Everything

Xhier is built on the idea that automation is
good. Accordingly, there is anxhier program to
do just about anything to do with software installa-
tion and distribution.

There are currently about 80 commands in the
xhier package, most of them shell scripts. Com-
mands are used for such things as package crea-
tion, maintenance and installation, and distribution,
along with some utilities that are useful for day-
to-day operation (log file rollers, etc.). The follow-
ing is a summary of some of the more prominent
commands.

The xh-mkpkg command creates a package
skeleton in the /software directory, with com-
mand and support directories, and some template
files, that can be filled in by the package creator.
This makes the initial creation of a package
simpler, because a package creator doesn’t have to
remember all the details.xh-make is used as a
cover for make(1) and imake(1) and uses a stan-
dard imake template to make it easy to compile
and install a program (see Figure 4).xh-make,
when used with anxh-imakefile , ensures that
any architecture-specific libraries and commands
are used.

#include "../PackageName"
Program(callpat,c,user)

Figure 4: Typical xh-imakefile file for use
with xh-make

Once a package has been compiled and
installed into the package directory, thexh-install
command makes it available for use. It does this
by running the package’sInstall script, to do
any package-specific tasks (such as package
configuration, or replacement of any stock files),
and then, if that is successful, invoking other pro-
grams to patch system files (like
/etc/services) from the fragments in the
package’sexport directory.

Once a package has been installed, and is
working on one machine6, it can be distributed to,
and built on other machines. This is a two-step

6Currently, this must be a machine higher up the tree,
usually the one central machine, but this will change in
the future, so that any machine can be the initial
‘‘maintenance’’ machine for a package.

process. Thexh-distribute command is used to
distribute the package contents and structure to
other machines. It creates aDistfile for use
with rdist that sends the appropriate files to the
appropriate machines lower on the tree. For exam-
ple, it will send the shared files everywhere, but
architecture specific files will only be sent to
machines of the same architecture (though it will
complain if files on a machine of a different archi-
tecture are out of date, or missing).xh-distribute
then invokesrdist and summarizes the output for
easier human consumption.

The second step isxh-sdist, which distributes
the source for the package to machines of other
hardware/software architectures (the ‘‘architecture
master’’ machines)7, and runsxh-make on those
machines in the background, collecting the output
and mailing it to the invoker. xh-sdist has a
number of options and configuration files to control
exactly what gets distributed to the remote
machines (e.g.,.o files are not distributed).xh-
sdist has turned out to be an incredibly useful tool
– it makes updating software and installing fixes
almost trivial8.

To help ensure that software is kept up to
date, working, and consistent on all machines,xh-
maintenanceis run weekly from thecron (on every
xhier’d machine). xh-maintenance does some
housekeeping and consistency inspection, and runs
xh-install andxh-distributeon all packages, arrang-
ing to send the appropriate output to the appropri-
ate package and system maintainers.

Since xh-maintenanceis run weekly, starting
at the same time on every machine, it can take
several weeks for package updates to reach the
bottom of the distribution tree9. And so the other
important distribution-related tool isxh-dist-
recurse, which attempts to distribute a package
recursively down the distribution tree. This can be
very useful in distributing fixes quickly, in case
you’ve inadvertently broken something and don’t
want to wait for the usual propagation delays to
distribute the fix.

7xh-sdistsends the source to a temporary directory on
the remote machines, and it is automatically removed
after a few days.

8It should be pointed out thatxh-sdist is somewhat of
a kludge, because it introduces an arbitrary distinction to
some machines, that of being an architecture master,
when it should be possible to distribute source to and
build a package on just about any machine.

9This propagation delay can be a blessing, because it
can keep broken packages from infecting the entire
distribution tree.

24 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

Sellens Software Maintenance in a Campus ...

Making it all Available to the Users

In a conventional software installation,
software is installed in one location only (com-
monly /usr/local/bin), or in other OS-
specific directories (such as Sun’s
/usr/openwin/bin), which the user is
expected to add toPATH. Expecting a user to
know where software is installed is not always rea-
sonable. For many years, MFCF has had a com-
mand, showpath, to help users set theirPATH
without having to know the specifics of a particular
machine.

With xhier, once the packages are installed,
there are many different package directories, each
containing command directories (e.g.,bin), man
directories, include directories, and/or lib
directories. Theshowpath command could simply
produce a list of all thebin directories in all the
installed packages. This, however, quickly
becomes too cumbersome to handle – a 3,000 char-
acter PATH containing 200 directories is a little
large. It also becomes inefficient since some shells
hash thePATH contents, but often only the first
few elements (csh apparently hashes the first 8 ele-
ments ofPATH).

setenv PATH ‘showpath usedby=user $HOME/bin standard‘
setenv MANPATH ‘showpath class=man standard‘
setenv EDITOR ‘showpath findfirst=vi‘

% echo $PATH
/u/jmsellens/bin:/.software/local/.admin/bins/bin:/usr/ucb:/bin:/usr/bin
% echo $MANPATH
/software/.admin/man/:/usr/man/
% echo $EDITOR
/.software/local/.admin/bins/bin/vi

Figure 5: Typical extract from a user’s.cshrc file, and resultant variables

Xhier approaches this problem by creating a
directory that contains a link to each of the
installed, packaged commands, using thexh-make-
links command. These links have to be symbolic
links, since the commands are not always going to
be on the same filesystem (or even the same
machine). There are actually three of these direc-
tories, one for user commands, one for mainte-
nance commands, and one for commands used by
other programs (servers). These directories are
system-wide and system-specific in that they con-
tain links to the commands for only those packages
that the system administrator wishes to be
‘‘default’’ packages10. A user’s PATH consists of
the directory of links, the appropriate stock direc-
tories (for that architecture), and any other direc-
tories the user wishes to include. These directories

10In practice, the set of ‘‘default’’ packages is
virtually the same everywhere.

of symbolic links might be expected to cause a
performance penalty on command invocation, but,
in practice, it seems not to be a problem.

This ‘‘searchrules’’ approach to commands
works well, but it is harder to apply it to the other
parts of a package. Manyman(1) commands
understand aMANPATHvariable, but most com-
pilers and loaders don’t have an easy way (i.e., an
environment variable) to extend the searchrules for
include files and libraries. Include files and
libraries are linked (again usingxh-make-links) into
the standard locations honoured by the OS, usually
/usr/include and /usr/local/lib .

One more minor complication. MFCF had
been using therman remote man command11 to
provide man pages to smaller machines, where
there is often not enough disk space to keep man
pages locally. Local modifications torman allow
the remote man page server to deal with packaged
man pages by special interpretation of theMAN-
PATHvariable. Figure 5 shows typical commands
that would be included in a.cshrc file, and
common values of key environment variables.

Some Lessons Learned from Xhier

Xhier tends to point out some of the more
obscure points of software installation. One prime
lesson is that doing software distribution can turn
out to be a complicated process, with a certain
amount of overhead.

Automation is a necessity, once more than a
few machines are involved, but it turns out that
some things can be hard to automate. For exam-
ple, it’s not too hard to add an entry to the
/etc/services file, but it’s a little harder to
notice conflicts or replacements, and some pack-
ages might want a particular userid to exist (e.g.,
‘‘games’’), but it’s hard to add an appropriate
account to a passwd file automatically. The
current xhier utilities handle inetd, cron, and
/etc/rc entries fairly well (by automatically
editing the appropriate system files, and disabling

11By Jonathan C. Broome, posted tonet.sources
in 1985.

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 25

Software Maintenance in a Campus ... Sellens

conflicting stock entries), but passwd and
group file entries still have to be applied by hand
(local administrators are prompted to do it when a
package is installed). And while automation
allows easy installation and distribution, it also
makes it easy to distribute broken software and
automatically destroy dozens of machines.

Some software comes with particular path-
names built-in, often hard-wired pathnames are
sprinkled throughout the code (especially files des-
tined for /etc), and it’s often hard to change
these pathnames to refer to locations under
/software instead. In other cases, they are easy
to change, but the same symbolic name is used for
different kinds of files. For example, themake
variable ‘‘USRLIB’’ might be set to /usr/lib ,
and be the location for both object libraries and
data files, or ‘‘ETCDIR’’ might be used to contain
local configuration files and system maintenance
commands. Files are often named for their loca-
tion, rather than for their function.Xhier -ing a
package forces an installer to interpret the given
pathnames, and choose appropriatexhier path-
names instead.

In addition, certain pathnames, like
/usr/lib/sendmail and /usr/ucb/lpr ,
are known to many programs, and so any replace-
ment versions of these programs must also replace
the well-known stock pathnames (with links to
xhier file locations).

It’s hard to organize NFS (or, presumably,
other remote file system) mounts to make software
sharing foolproof. This problem is especially evi-
dent with symbolic links. A symlink to an abso-
lute pathname will start looking for the file at/
on the local machine, even though the link is on
the remote machine. And conversely, a relative
symlink will tend to stay on the remote machine,
unless it passes up through a mount point. Some
uses seem to call for absolute symlinks, and some
seem to call for relative symlinks, but so far we
have been unable to come up with a rule (or even
a guideline) that works in all cases.

Choosing what goes in what package is hard.
It’s not always easy to group software into
appropriate packages, and different administrators
might want different parts of a package, instead of
the whole thing. Large packages are easier to deal
with, but small packages give greater flexibility.

It’s easy to generate lots of junk mail, so
efficient ways of summarizing and distributing it
are required.

Future Plans and Dreams

The current distribution mechanism uses a
tree structure, with each member in the tree ‘‘push-
ing’’ packages to lower nodes in the tree. This is
less than optimal, but was necessary since the only

distribution tool available at the time of implemen-
tation wasrdist. Some of the problems with this
approach are
� Distribution is scheduled by the upstream

host(s). A subsidiary node has (essentially)
no control over when its software gets
updated. This is annoying when a
guaranteed stable environment is desired,
such as when one is trying to finish a thesis,
or a machine is used for student classwork.
In practice, this hasn’t turned out to be a
problem, since a request to an upstream
administrator is usually enough to modify
the distribution list.

� It is inconvenient to have two (or more) dis-
tinct machines be the ‘‘masters’’ of two dif-
ferent packages and exchange packages with
each other, because the use ofrdist forces
essentially ‘‘wide-open’’ access for the
upstream machine on the downstream
machine (via /.rhosts).

� This style of distribution seems to require
wide open access to a machine by its distri-
bution machine.

� Its hard for a given machine to dictate
exactly what software it gets, because that is
decided by the upstream host(s).

For these reasons, distribution control will pass to
the receiving machines, and the tree structure will
be replaced with a more flexible one, where any
two cooperating machines can exchange whatever
software they wish to.

This, however, requires a program like
track(1) that can do most of the same things that
(the locally enhanced)rdist (1) can do. This work
is currently underway. It also requires fairly major
changes to the mechanisms that determine which
parts of which packages get sent to which
machines. These changes are almost in place, to be
used with the current distribution mechanism until
something ‘‘track-like’’ is ready.

Most machines don’t have enough local disk
space to contain all packages, or even just the ones
they want to use. Current space usage on the pri-
mary maintenance machine12 is

% du -s /.software/*
105 /.software/admin
272164 /.software/arch
11823 /.software/local
727 /.software/regional
231340 /.software/share

or a total of over 500 megabytes, in addition to the
space required by the OS13. As a result, remote
file system mounts (currently only via NFS) are

12‘‘watmath’’, a MIPS RC6280.
13This excludes the spool files (especially news

articles) under/.software/spool .

26 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

Sellens Software Maintenance in a Campus ...

required to make the necessary software available
on many machines. This is usually done in bulk,
where a machine might mount all of
/.software/share and /.software/arch
from a willing server. Things get complicated
when you wish to have some packages locally and
some remote mounted, since you either have to
mount each package individually, or arrange that
/.software/*/package are either real direc-
tories or symbolic links through the appropriate
mount points.

At present, all remote mounting is done
manually, which is getting less and less practical.
Some method needs to be devised to automatically
make the appropriate mounts and links, which will
allow a local administrator to easily add a software
package to a machine. It’s not at all clear what
the best approach to this problem is.

Xhier -ing a software package forces a
software maintainer to look beyond the local
machine, and consider how a package would be
installed and used on different machines, with dif-
ferent administrators, perhaps wishing different
defaults or environments. However, the current
outlook tends to stop at the edges of the campus.
A ‘‘shared’’ file tends to mean one that applies to
the campus as a whole, rather than to the ‘‘world’’.
In fact, there is currently no way inxhier to indi-
cate a file with type ‘‘campus’’, i.e., there is no
/.software/campus . It would be nice if it
was possible to distributexhier and xhier’d pack-
ages to other organizations, but that brings other
problems to light, such as the necessity to trust a
remote software provider.

Conclusions and Observations

With xhier, it is now almost trivial to make a
new software package available to hundreds of
machines. It’s easy to make and distribute fixes or
enhancements.

Xhier allows MFCF to provide software sup-
port, and a consistent user environment, on many
more machines than would be otherwise possible.

Xhier does have a number of faults
� It is large, and still changing, and it is not

always easy to understand how all the parts
fit together. However, most software main-
tainers do not need to know how it works,
just how to create a package and make it
available.

� It tends to create a maze of symbolic links.
� Requires a fair amount of machine overhead

to keep it shuffling software around.
� It relies on having a fairly BSD-ish set of

system services.

but overall it tends to meet the needs. For
MFCF and the University of Waterloo at least,
xhier is a success.

Appendix A: Creating and Installing a Pack-
age

Most software packages are very easy to
create, though large pieces of software, likegcc
or the X11 software, are more complicated. Typ-
ical package creation and installation goes some-
thing like the following example installation of
packagefoo.

First, the source is unpacked into
/usr/source/foo , and the Makefile s are
modified as appropriate, to set the right options,
and installation locations. Many times this is
done using anxh-imakefile (see Figure 4
for an example) that is processed withxh-imake
to allow easier per-architecture customizing.

The command

% xh-mkpkg foo

is used to create a skeleton structure in
/software/foo . This structure is then
adjusted by hand as required. Usually this just
means removing the parts of the skeleton not
required by this package.

Then the files in the.admin directory are
edited as appropriate. The appropriate options
are set from the defaults in theOptions file,
and the Install script is modified to do the
appropriate things on installation and uninstalla-
tion. Often this means just ending up with the
script

#!/bin/csh -f
exit 0

The foo package name is then ‘‘registered’’ by
adding it to thesoftware(i) man page14.

The software is installed via

% xh-make install

in the source directory. Once that completes, the
commands

% xh-install foo
% xh-distribute foo
% xh-sdist -m install

install the package locally, and then distribute the
package structure and source to the other archi-
tecture master machines, and compile and install
the package there.

Once this has been done, thefoo package is
available to anyxhier’d machine on campus,
with very little effort.

14This step needs a little refinement.

LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA 27

Software Maintenance in a Campus ... Sellens

Appendix B. Comparison to the Depot

The depot, as described in [1], has some
similarities toxhier, but is less automated, and is
based on a client-server distributed file system
environment, rather thanxhier’s greater emphasis
on the use of local file space to hold packages.

Both systems separate software into pack-
ages, and define a structure for the individual
packages. Thedepot requires human interven-
tion for each installation, in order to execute an
optional installation script, and to modify system
files (such asinetd.conf) if necessary;xhier
uses thexh-install program and the package’s
Install script. The depot uses redundant
servers for the packages, but distributing a pack-
age to a redundant server is done manually;
xhier has automatic distribution of the packages.
The depot is geared primarily to the use of
server machines that contain all the files for all
architectures. This makes it less useful for stan-
dalone machines (such as a home workstation),
since such a machine would have to have the
binaries for every architecture, requiring more
disk space (unless manual pruning was used).

Maintenance activities are less automated in
the depot as well. In order to recompile or
update a package, a maintainer has to go to the
depot administration machine of the appropriate
architecture, and compile and install the package
there. Xhier , on the other hand, uses thexh-sdist
command to rebuild and install a package on all
subsidiary architectures, which helps ensure that
packages are kept up to date on all architectures.

Since the depot uses automount mount
points, as listed in an NIS database, to make
packages available to client machines, it is harder
for a system administrator to tailor the set of
packages available on a particular machine or set
of machines. Xhier makes it easy for an
administrator to pick and choose what packages
are available on his or her machine(s). Admit-
tedly, in a primarily client-server, workstation
environment, this is less of a problem.

With xhier, a system administrator can con-
trol when packages get updated on his or her
machine, which is useful in a student lab
environment, or on a personal workstation when
trying to complete a project. Since thedepot is
based on the client-server model, it is much more
difficult for a client to ‘‘refuse’’ an update.

Xhier provides a set of tools for modifying,
or replacing vendor provided files, which makes
it possible to correct flaws in stock systems, or
customize them to local requirements.Xhier
provides simple interfaces to system services
such as /etc/rc and cron. This means that a
package maintainer does not usually have to
worry about system-specific details.

Xhier makes extensive use of search paths
in order to hide the details of an implementation
from the users. With thedepot, a user must
know where programs and man pages are located
in the hierarchy in order to make use of them.

Xhier Availability

Xhier is still under development, and still
contains many transitional provisions to correct
past mistakes, and it is currently difficult to
bootstrapxhier into a new environment (such as
another campus). It is also a large collection of
source, which relies in part on modifications to
licensed software.

As such,xhier is not currently available for
distribution, though we hope to be able to make
all or part of it and its tools available at some
point in the future.

Author Information

The work described in this paper is due to
the efforts of all members of the Math Faculty
Computing Facility software group, although the
paper itself was compiled by John Sellens,
currently with the Department of Computing Ser-
vices at the University of Waterloo, in theUNIX
Support group. Any and all errors, confusion and
inaccuracies should be attributed to him. Reach
him via physical mail at University of Waterloo;
Waterloo, Ontario; N2L 3G1 CANADA. Reach
him via networked electronic mail at
jmsellens@watserv1.uwaterloo.ca.

References

1. Manheimer, K., B. A. Warsaw, S. N. Clark,
and W. Rowe, ‘‘The Depot: A Framework for
Sharing Software Installation Across Organi-
zational and UNIX Platform Boundaries’’,
LISA IV Proceedings, October 1990, pp. 37-
46.

28 LISA V – Sep. 30-Oct. 3, 1991 – San Diego, CA

